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Abstract

The generalized graded unfolding model (Roberts, Donoghue and Laughlin, 1998, 1999) is an
item response theory model designed to unfold polytomous responses. It is appropriate for data
obtained in situations where subjects respond to a series of statements using either a binary or
graded scale of agreement (e.g., situations where Thurstone or Likert attitude measurement
procedures are employed). The model is based on a proximity relation which postulates higher
levels of expected agreement with a given statement to the extent that a respondent is located
close to the statement on a unidimensional latent continuum. Roberts et al. (1998) have examined
the recovery of item and person parameters from the generalized graded unfolding model. Item
parameters were estimated with a marginal maximum likelihood technique in which person
parameters where numerically integrated out of the likelihood function based on a prior
distribution. Person parameters were estimated using an expected a posteriori technique which
also required numerical integration over a prior distribution of person parameters. Roberts et al.
(1998) examined recovery of model parameters when the prior distribution of person parameters
perfectly matched the true distribution. In contrast, this study used simulation methods to assess
the sensitivity of model parameter estimates to the prior distribution used in these estimation
procedures. It also examined the effects of the number of quadrature points used in the numerical
integration process and the calibration sample size on the accuracy of the resulting parameter
estimates. The results showed that item parameter estimates derived from the marginal maximum
likelihood procedure were fairly robust to discrepancies between the prior and true distributions
of person parameters. Consequently, the person parameter estimates derived from the EAP
procedure were generally robust as well, except for those individuals with the most extreme
response patterns. The results also indicated that 20 quadrature points were adequate for the
accurate recovery of model parameters. These findings will help establish the utility of the
generalized graded unfolding model in applied measurement situations and will promote the use of
item response theory in the attitude/preference measurement domain.

1

3



Educational researchers typically use self-report questionnaires to assess attitudes toward or
preferences for a variety of stimuli (e.g., attitude toward mathematics, preference for alternative
types of instruction, etc.) Such questionnaires often contain a graded disagree-agree response
format to gauge the level of individual agreement to a series of statements that range in content
from negative, to neutral, to positive opinions. Several researchers (Andrich, 1996; Roberts,
1995; Roberts & Laughlin, 1996a, 1996b; Roberts, Laughlin & Wedell, 1999; Roberts, Wedell &
Laughlin, 1998; van Schuur & Kiers, 1994) have argued that graded disagree-agree responses are
generally more consistent with an unfolding model of the response process rather than the more
popular cumulative model. Unfolding models are proximity models which imply that higher item
scores, indicative of stronger levels of agreement, are more probable as the distance between an
individual and an item on the underlying latent continuum decreases (Coombs, 1964). In this
case, the underlying continuum will be characterized as a unidimensional, affective, bipolar
continuum ranging from a very negative to a very positive orientation.

Roberts and colleagues (Roberts, 1995; Roberts, Donoghue & Laughlin, 1998, 1999; Roberts
& Laughlin, 1996a, 1996b) have developed a family of item response theory models that
implement an unfolding response mechanism. The most general of these models is called the
Generalized Graded Unfolding Model (GGUM). At a conceptual level, the GGUM suggests that
an individual will endorse an item to the extent that the sentiment conveyed by the item matches
the individual's own opinion well. Psychometrically, the individual is expected to endorse the
item to the extent that the individual is located close to the item on the latent continuum. The
probability of obtaining an observed response Ziunder the GGUM is defined as:

Pr[Zi= z 101]

z

exp a; [z E Tik + exp a; [(M-z)(0i-8;) E tik
k=0 k=0

E expi ai [w (131-81) E ti + exp a; [(M-w)(01-81) E t )
w=0 k=0 k=0

(1)

for z = 0, 1, C; where Oi is the location of the jth individual on the latent continuum, Siis the
location of the ith item on the latent continuum, a; is the discrimination parameter for the ith item,
ta, is the kth subjective response category threshold for the ith item, C is the number of observable
response categories minus 1, and M is equal to 2*C+1. Note that ej is an index of theft':
individual's attitude and 8; is an indicator of the ith item's affective content.

The GGUM yields single-peaked, bell-shaped response functions that imply higher levels of
agreement to the extent that the individual and the item are close to each other on the latent
continuum ( i.e., to the extent that I 0. - oi I approaches zero). The GGUM is more general than
other unfolding item response theory models in that it allows items to vary in their discrimination
capabilities (via ai), and it allows subjects to utilize the response scale differently for each item
(via TO.
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Figure /. Response functions for a hypothetical 3-category item under the GGUM. Response functions are given for
alternative values of the cci parameter while the values for ra, are held constant.
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Figure 2. Response functions for a hypothetical 3-categoiy item under the GGUM. Response functions are given for
alternative values of the ta, parameters while the value for a; is held constant The ta, parameters for each function are
ordered and equally spaced. The distance between successive T parameters (i.e., interthreshold distance) is varied
between response functions.
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Figures 1 and 2 illustrate the response function of the GGUM for a hypothetical item with a 3-
category response scale, where 0=disagree, 1=neither disagree nor agree (neutral), and 2=agree.
In Figure 1, the discrimination parameter, ai, varies from .5 to 30 while the subjective category
thresholds, ilc are held constant. As ai increases, the response function becomes more peaked
and takes on higher expected values. For extremely large values of ai, the response function
resembles a Guttman-like step function where successively higher order response categories are
expected as the distance between Oj and 8; decreases. In Figure 2, ai is held constant as the
distance between equally spaced T11, values (i.e., the interthreshold distance) is varied. As the
interthreshold distance grows from .25 to 1.5, the response function takes on larger expected
values, but it becomes broader (i.e., more generalized). The role of ai and -Ea, are, thus, quite
distinctive within the GGUM.

To date, there has been only one empirical study of parameter recovery in the GGUM.
Roberts, Donoghue and Laughlin (1998) have shown that when data conform perfectly to the
GGUM and 0, values are known to follow a normal distribution, then item parameters can be
accurately estimated using a marginal maximum likelihood (IvIML) technique (Bock & Aitkin,
1981; Muraki, 1992) with samples of 750 or more respondents. Additionally, person locations
(i.e., attitudes) can be accurately estimated with an expected a posteriori (EAP) technique (Bock
& Mislevy, 1982) when there are approximately 15 to 20 items with 6 graded disagree-agree
response categories per item. Thus, the minimum data requirements of the MML and EAP
methods, as implemented in the GGUM, have been examined for the case where the data follow
the model perfectly and the true distribution of ej is known.

Although these minimum data demands have been studied, questions about parameter
estimability in the GGUM remain. For example, both the MML item parameter estimation and
EAP person parameter estimation techniques require the specification of a prior distribution for
0j. In their previous recovery study, Roberts et al. (1998) used a normal prior distribution that
perfectly matched the true 0j distribution. Thus, the consequences of using a normal prior
distribution to estimate GGUM parameters when the true 0, distribution is not normal are
currently unknown. The normal distribution would often seem to be a reasonable choice for a
prior distribution in the absence of information about the true ej distribution. In practice,
however, the true distribution of 0, will likely deviate from the normal distribution to at least some
degree, and there is currently no information about the sensitivity of MML and EAP estimates to
discrepancies between prior and true distributions of 0j. If item and/or person parameters
estimated in the GGUM are especially sensitive to the prior distribution assumption, then the
utility of the MML and EAP estimation techniques will be compromised whenever information
about the true distribution of 0, is lacking. Although some information on sensitivity exists for
binary cumulative models (Bock & Aitkin, 1981; Seong, 1990; Bartholomew, 1988), there is no
such information about polytomous unfolding models. Consequently a major goal of this paper is
to assess the effects of using a normal prior distribution for ei when the corresponding true Oi
distribution is not normal. A secondary goal is to assess the degree of improvement in parameter
estimates that can be obtained by correctly specifying a nonnormal prior distribution that perfectly
matches the corresponding true distribution of O.
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A related point can be made with regard to the numerical methods used to solve for GGUM
parameter estimates in the MML and EAP algorithms. Each of these algorithms requires the
evaluation of an integral taken over the prior distribution for O. This evaluation is performed
using numerical quadrature. However, there is currently no information about the sensitivity of
parameter estimates in the GGUM to the number of quadrature points implemented in the MML
and EAP estimation algorithms. Therefore, this paper will examine the effect that the number of
quadrature points has on the estimates derived from the MML and EAP techniques.

The sensitivity of both MML estimation of item parameters and EAP estimation of person
parameters to the correctness of the prior ei distribution and to the number of quadrature points
utilized in the numerical integration process will be examined with parameter recovery
simulations. In these simulations, the generating (true) and prior distributions for ej will be
systematically varied along with the number of quadrature points used in the estimation algorithm.
The role of the calibration sample size will also be investigated. These simulation results will
provide much needed information about the robustness of MML and EAP parameter estimates for
the GGUM.

Method

Design

The recovery simulations conducted in this study examined the effects of the following four
variables:

1) type of generating (true) 0, distribution

normal
bimodal-symmetric
negatively skewed
positively skewed

2) sample size

N=500
N=750
N=1000
N=2000

3) number of quadrature points

15 points
20 points
30 points
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4) Correspondence between the prior and generating distributions

matching prior distribution
nonmatching normal prior distribution

These factors were partially crossed to produce a 4 (generating distribution) x 4 (sample size)x 3
(number of quadrature points) x 2 (correspondence between prior and generating distribution)
design with one missing cell. The first two of these factors were between-replications factors
whereas the last two were within-replications factors. The design was a partial factorial because
it contained a missing cell which arose because it was logically impossible to have a normally
distributed prior distribution that did not match the normally distributed generating distribution.

Generating Distributions

All of the generating distributions were standardized to have a mean of 0 and a variance of 1.
The bimodal-symmetric distribution (henceforth referred to as the bimodal distribution) was
developed by mixing two normal distributions with means of + .894 and variances of .2 where the
mixing probabilities were equal to .5. The resulting distribution had a mean of 0, a variance of 1,
a skew of 0 and a kurtosis of -1.28. The two skewed distributions were developed using formulas
derived by Ramberg, Tadikamalla, Dudewicz, and Mykytka (1979). Each skewed distribution
had a mean of 0, a variance of 1, a kurtosis of 1.6 and a skew of either plus or minus 1. Figure 3
illustrates the density fiinctions for these generating distributions

Item Parameters and Response Generation

Twenty items with 6 response categories per item (0=strongly disagree, 1=disagree, 2=slightly
disagree, 3=slightly agree, 4=agree, 5=strongly agree) were used in every condition. The 20 item
locations were equally spaced between -2.0 and +2.0 on the latent continuum. Discrimination
parameters for each item were randomly chosen from a uniform distribution spanning the interval
of (.5, 2.0). Subjective category thresholds were determined in a sequential fashion. First, Tic
was generated from a uniform (-1.4, -.4) distribution, and then successive values were derived
from the recursive formula tik_1 = tik .25 +eik_l for k = C, ..., 3, 2, where eik_l denotes
random error from a N(0, .04) distribution. These item parameter values were consistent with
past simulations of unfolding IRT models and were also consonant with analyses of real data.

The response of a simulee to an item was generated by computing the probability of observing
a given response category as specified in equation 1. These response category probabilities were
used to divide a (0,1) interval into discrete segments whose width corresponded to the relative
magnitude of each response category probability. A random uniform deviate was then generated,
and the segment of the (0,1) interval into which the random deviate fell determined the simulated
observed response to that item.
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Figure 3. Probability density functions for the four ei generating distributions used in the simulation.
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Parameter Estimation

Item parameters were estimated using a marginal maximum likelihood (MML) technique
described in Roberts, Donoghue and Laughlin (1998). In this technique, ei parameters are
numerically integrated out of the likelihood equation, and then the log of the marginal likelihood is
maximized to find estimates of the item parameters. The iterative numerical integration-
maximization process was continued until the change in any item parameter was less than .001.
The quadrature points were always equally spaced along the [-4, +4] interval regardless of the
number of quadrature points or the type of prior distribution used in the integration process. On a
given replication, item responses were generated, and then parameters were estimated under 6
different estimation conditions defined by the number of quadrature points (15, 20, 30) and
whether the prior distribution matched the generating 13.i distribution (yes, no). The one exception
to this process occurred when the generating distribution was normal, in which case, only a
matching normal prior was investigated.

Once a given set of item parameters were estimated, the person parameters were then
estimated using the expected a posteriori (EAP) method described in Roberts et al. (1998). This
method uses the mean of the posterior Eli distribution as the estimate for the jth individual given
the observed responses, the estimated item parameters, and the prior distribution of O.

The process of generating data and repeatedly solving for parameters was replicated 10 times
in each Eli generating distribution x sample size condition. Within each of these 10 replications,
the generating item and person parameters were held constant, and new item responses were
generated and subsequently analyzed.

Measures of Estimation Accuracy

Three measures of estimation accuracy were investigated in this study. The Root Mean
Squared Error (RMSE) was the first of these measures. The RMSE provided an index of the
average unsigned discrepancy between a set of true parameters and a corresponding set of
estimates. The RMSE was calculated across all the parameters of a given type in any single
replication. For example, the RMSE of item location estimates from a particular replication was
computed as:

RAISE
N

where:

E (8.--E92
i=1

S.= the true location of the ith item on the attitude continuum,
8.= the estimated location for the ith item on the attitude continuum, and
/ = the number of items on the test (i.e., 20).
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Analogous quantities were computed for the item discrimination, subjective response category
threshold and person parameters in a given replication.

The Pearson correlation between estimated and true parameters was the second measure of
accuracy utilized in the investigation. This correlation was computed across a given set of
parameters (i.e., oh, 8i, t, or ei ) within each replication. Therefore, it provided a simple index of
the degree of linearity between estimated and true parameter values. We refer to this correlation
as a recovery correlation and denote it as RCORR in subsequent sections of this report.

The third and final measure of accuracy was the average absolute discrepancy between
estimated and true response functions on the 0 interval of [-3, 3]. This measure was calculated by
integrating the absolute difference between the response function of the ith item computed with
true parameters and that computed with estimated parameters, and then dividing the result by 6
(i.e., the length of the evaluation interval):

Di = z113"r[Z = z 0 ]- Pr[Z; = z 0 ]
-3 z=0

de . (3)

Note that 151.[Z1 = z I 0 ] and Pr[Z = z I 0 ] represent the value of Equation 1 when calculated
from estimated and true item parameters, respectively. The integral in equation 3 was evaluated
numerically for each item using a globally adaptive scheme based on Gauss-Kronrod rules
(Piessens, deDoncker-Kapenga, Uberhuber, Kahaner, 1983), and then the resulting D. values were
averaged across all the items within a given replication. The resulting measure, denoted as AAD,
provided an index of the average similarity between the estimated response functions and the true
functions for a given set of items. Some researchers have argued that an index like AAD is the
most useful measure of overall estimation accuracy because item parameter estimates can be
substantially different from true values yet still yield estimated response functions that are quite
similar to their corresponding true functions (Hulin, Lissak & Drasgow, 1982; Linn, Levine,
Hastings & Wardrop, 1981).

Analysis of Accuracy Measures

Each accuracy measure was analyzed using two different ANOVAs in an effort to provide
meaningful and unique results in the presence of a missing cell within the factorial design. The
first analysis was a univariate split-plot ANOVA conducted using only those data from the normal
prior distribution conditions. This analysis examined all main effects and interactions involving
the generating distribution for O, the sample size, and the number of quadrature points used. The
primary purpose of this analysis was to determine the impact of using a normal prior distribution
in the parameter estimation algorithm when the true ei distribution was not normal - a situation
which is likely to occur in practice to at least some degree. The effect of the number of
quadrature points used and the effect of sample size were also of interest here, as were the
interrelationships of these variables with the sensitivity to the normal prior distribution.
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The second analysis was a univariate split-split-plot ANOVA and utilized all the data except
those from the normal generating distribution conditions. In this second analysis, the main effects
and interactions involving the generating distribution for 0.0 the sample size, the number of
quadrature points, and the correspondence between the prior and generating distributions were all
tested. The primary focus of this second analysis was to assess the improvement in parameter
estimation accuracy obtained from perfectly matching a nonnormal prior distribution with a
corresponding nonnormal generating distribution for ej, relative to the estimation accuracy
encountered with a normal prior distribution. Again, the effect of the number of quadrature
points, the effect of sample size and the interactive effects of these variables on the impact of the
prior distribution was also of interest.

When considering both the first and second analyses, there were a total of 18 dependent
measures studied for those effects not involving the match between the prior and generating
distribution. Therefore, the Type I error rate was set to a=.05/18=.00278 when testing those
effects. In contrast, only 9 dependent measures were studied with regard to those effects
involving the matching factor, and thus, the Type I error rate was held at a=.05/9=.0056 for these
effects. The proportion of variance associated with each effect (re) was calculated for each
dependent measure. An effect was deemed to be worthy of interpretation if it was both
statistically significant and accounted for at least 5% of the variation in a given dependent
measure.

Results

MMI, Estimates of Item Parameters

Analysis 1. Table 1 displays the proportion of variance, re, associated with each of the
ANOVA effects in the first analysis of the RMSE, RCORR, and AAD measures. Recall that this
first analysis was limited to those replications where a normal prior distribution for Oj was used
with either a normal, bimodal, positively skewed or negatively skewed generating distribution. As
shown in Table 1, the RMSE measures for 81, ai, and Til, were primarily a function of the
generating distribution for Eli, the sample size, and the number of quadrature points used in the
numerical integration process. Figure 4 displays the average RMSE values obtained for each type
of item parameter under each Oi generating condition. Interestingly, the RMSE values were
statistically similar across the generating conditions with the exception of the bimodal distribution
condition in which the highest RMSE was incurred. Posthoc comparison of all pairwise means
with Tukey's HSD test confirmed this fact. Nonetheless, the absolute degree of error associated
with any of the generating distributions was both similar and reasonable. In the bimodal
distribution condition, the average RMSE represented 12.4%, 32.7% and 38.8% of the standard
deviations of true Si, ai, and tik parameters, respectively. The corresponding quantities for the
normal distribution condition were 9.3%, 26.8% and 32.0%. The magnitude of these error
indices also suggested that 81parameters were more easily estimated than either a; or tik
parameters.
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Table 1. re values for ANOVA effects from the first analysis of accuracy measures.'

Analysis 1 Analysis 1
RMSE RCORR

Effect 0 8 a O 8 a ti AAD

G
N
G x N
Q
G x Q
N x Q
GxNx Q

.23 .11 .06 .08 .20 .19 .09 .07 .06

.08 .20 .15 .48 .08 .25 .44 .64 .13

.29 .04 .01 .02 .32 .04 .03 .01 .01

.05 .20 .47 .15 .01 .00 .00 .00 .52

.00 .01 .02 .00 .00 .00 .00 .00 .06

.00 .00 .02 .00 .00 .00 .00 .00 .01

.00 .01 .00 .00 .00 .00 .00 .00 .00

a G=type of generating distribution for ei , N=sample size, Q=number of quadrature points. Statistically significant
effects are denoted by boldface type. Significance was determined by a univariate, split-plot analysis of variance with
a=.00278. Effects were deemed to warrant interpretation when they were both statistically significant and had
corresponding 112 values greater than or equal to .05.

Figure 5 displays the average RMSE incurred for ô, cci, and til, in the first analysis as a
function of calibration sample size. As expected, the amount of error associated with item
parameter estimates decreased as the sample size increased from 500 to 2000. However, the
increased precision afforded by larger samples began to wane after the sample size reached 1000.
The re values in Table 1 suggest that the sample size effect was most pronounced for the
estimation of tik parameters. This was corroborated when the average RMSE indices were
expressed as a percentage of the standard deviation of the corresponding true parameters. The
percentages were equal to 12.5% for 8, 34.7% for cc, and 43.2% for til, in the N=500 condition.
Those for the N=2000 condition were equal to 7.5%, 25.2% and 25.4% respectively. Thus, the
largest reduction in this error index occurred with the til, parameters.

Figure 6 illustrates the average RMSE fork cei, and til, as a function of the number of
quadrature points. For each item parameter, there was a very noticeable decline in RMSE as the
number of quadrature points increased from 15 to 20, after which there was little gain in precision
associated with more quadrature points. The If values in Table 1 suggest that the number of
quadrature points had the most impact on the RMSE for cci followed by that for Si.
This impact on a; estimates was corroborated when the RMSE was expressed as a percentage of
the standard deviation of true parameter values. With 15 quadrature points, these percentages
were equal to 12.7%, 38.6%, and 39.6% for Si, ai, and Tik , respectively. The corresponding
percentages for the 20 quadrature point condition were 9.0%, 25.9% and 32.3%.
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Figure 4. Mean RMSE indices for the item parameter estimates derived from different generating distributions for O.
N=normal distribution, B=bimodal distribution, PS=positively skewed distribution, and NS=negatively skewed
distribution. Results are from Analysis 1, which included only those data from conditions with a normal prior
distribution for O.
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Figure 5. Mean RMSE indices for the item parameter estimates derived under different sample size conditions. Results
are from Analysis 1, which included only those data from conditions with a normal prior distribution for O.
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Figure 6. Mean RMSE indices for the item parameter estimates derived using different numbers of quadrature points in
the MMI., procedure. Results are from Analysis I, which included only those data from conditions with a normal prior
distribution for O.
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The average RCORR for Si, ai, and tfl, was primarily a function of the generating distribution
for Eli and the sample size. Figure 7 illustrates the average RCORR values for Si, ai, and tik as a
function of the generating distribution. Departures from linearity between true and estimated
parameters were generally greatest in the bimodal 0; generating condition, although the average
RCORR index in that condition was still high for all three item parameters (i.e., .94 or greater).
Figure 8 shows the average RCORR values for eli, ab and Til, as a function of sample size. The
average RCORR values consistently increased as the sample size increased. However, there was
little change in average RCORR values for 8; and ai after the sample size reached 1000, whereas
the RCORR values for To, continued to improve in a relative sense.

The average AAD values were primarily a function of the generating distribution for (ii, the
sample size, the number of quadrature points, and the generating distribution x quadrature points
interaction. The 12 values from Table 1 indicate that the number of quadrature points was the
most pronounced of these effects. Figure 9 shows the average AAD values corresponding to
each effect. The average AAD values shown in Figure 9 were consistently small in absolute
magnitude (e.g., less than .18 on a 6 point response scale). With regard to the generating
distribution for 0.0 the largest mean AAD was incurred with the skewed distributions (.114 and
.112 for the positively skewed and negatively skewed distributions, respectively) although the
maximum difference in AAD between any two distribution conditions was small (e.g., .025). As
one might expect, the average AAD decreased as a function of sample size falling from .125 to
.082 as the sample size increased from 500 to 2000. The average AAD also fell as the number of
quadrature points increased. However, decreases in AAD were minor beyond 20 quadrature
points, and this pattern was consistently observed for all 0; generating distributions. The
generating distribution x quadrature point interaction appeared primarily due to the unusually low
level of AAD for the bimodal condition when 15 quadrature points were used.

Analysis 2. Table 2 gives the 12 values for the ANOVA effects in Analysis 2. Recall that in this
analysis, only the non-normal ei generating conditions were considered and the effects of both
matching and non-matching (normal) prior distributions were examined. As in the previous
analysis, the main effects of sample size and number of quadrature points were evident when
considering the average RMSE for 8i, ai, and t. The pattern of these effects were very similar
to those found in Analysis 1 (see Figures 5 and 6) in that increasing sample size decreased the
amount of error in the estimates, as did increasing the number of quadrature points. Again, the
decreases in estimation error were minimal with more than 1000 subjects or more than 20
quadrature points, respectively. Interestingly, with regard to average RMSE, there was no effect
involving the match between the generating and prior ej distributions which met the criteria for
interpretation. This suggested that the effects of matching a nonnormal true 0; distribution with a
correctly specified prior distribution were small relative to those mentioned above.

The main effect of sample size appeared to substantially influence the average RCORR values
for 8, ai, and tac. As the sample size increased, the correlation between true and estimated
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Table 2. if values for ANOVA effects from the second analysis of accuracy measures.'

Effect

Analysis 2 Analysis 2
RMSE RCORR

e 8 a o 8 a AAD

G .10
N .07
G x N .13

Q .07
G x Q .00
N x Q .00
Gx N x Q .00
M .11
G x M .06
N x M .03
GxNxM .11
Q x M .00
GxQxM .00
N x Q x M .00
GxNxMxQ .00

.04 .00 .02 .08 .09 .03 .01 .01
.18 .18 .47 .06 .28 .47 .65 .12
.01 .02 .01 .15 .04 .04 .01 .01
.20 .42 .14 .01 .00 .00 .00 .50
.01 .03 .00 .00 .00 .00 .00 .03
.00 .01 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00
.01 .03 .03 .09 .01 .02 .02 .05
.04 .02 .02 .07 .02 .02 .00 .04
.00 .00 .00 .04 .01 .00 .00 .00
.00 .00 .00 .13 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00
.01 .00 .00 .00 .00 .00 .00 .01
.00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00

G=type of generating distribution for O , N=sample size, Q=number of quadrature points, M=match (correspondence)
between generating and prior distributions for ei. Statistically significant effects are denoted by boldface type.
Significance was detemiined by a univariate, split-split-plot analysis of variance with a=.00278 for those effects not
involving the matching factor and a=.00556 for those effects that did involve the matching factor. Effects were deemed
to warrant interpretation when they were both statistically significant and had corresponding if values greater than or
equal to .05.

parameters consistently increased. As the sample sized varied from 500 to 2000, the average
RCORR values increased from .995 to .998 for Si, .956 to .986 for ai, and .930 to .978 for T1.
There was also a small main effect of generating distribution for the Si parameters. Specifically,
the average RCORR value was slightly lower in the bimodal generating distribution condition
(.995) than for either of the skewed distribution conditions (.997). No effect involving the match
between generating and prior Oi distributions was deemed worthy of interpretation when
considering the RCORR index.

The average AAD values in the second analysis were primarily a fimction of the sample size,
the number of quadrature points and the correspondence between the prior distribution for Oj and
the generating distribution. Moreover, the number of quadrature points had the largest effect as
indicated by the ri2 values in Table 2. The average AAD values consistently decreased with
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increasing sample size in a fashion analogous to that seen in the first analysis (see Figure 9). The
mean AAD decreased from .136 to .095 as the sample size increased from 500 to 2000.
Similarly, the effect of the number of quadrature points was analogous to that from the first
analysis (see Figure 9) and suggested that estimation error decreased as the number of quadrature
points increased, although little error reduction was achieved with more than 20 quadrature
points. The average AAD values were equal to .16, .10, and .09 for the 15, 20 and 30 quadrature
point conditions, respectively. Finally, the effect of the consistency between the generating and
prior ei distributions was in an intuitive direction. Specifically, the mean AAD was equal to .126
in those conditions in which the normal prior distribution did not match the generating
distribution, whereas it was equal to .105 when the prior distribution matched the generating
distribution. As seen in Table 2, this effect accounted for only 5% of the variation in AAD scores,
and the absolute magnitude of this difference was small in a practical sense.

The most striking feature of the second analysis was that, with the exception of mean AAD
scores, the other measures of item parameter recovery accuracy did not substantially depend on
any ANOVA effects involving the match between the prior and generating distributions for O.
This suggested that item parameter recovery in the GGUM using the MML algorithm was fairly
robust to the departures between the prior and generating distributions examined here.

EAP Estimates of Person Parameters

Analysis 1. Table 1 gives the 112 indices associated with the accuracy measures for EAP
estimates of the 0; parameters in the first analysis in which the prior distribution was always the
normal distribution. The results from this analysis indicated that the average RMSE for ej
parameters was primarily a function of the generating distribution for ej and the interaction of
sample size and generating distribution. However, the main effects of sample size and number of
quadrature points also met the criteria for interpretation. As expected, the R.MSE decreased as
the number of quadrature points increased up to 20 points, after which only small decreases in
estimation error were observed. Specifically, the average RMSE was equal to .245, .211 and .204
for the 15, 20 and 30 point conditions, respectively. The other effects on average RMSE are
shown in Figure 10. The main effect of generating distribution was due to a large average RMSE
value for the positively skewed generating condition relative to the other generating conditions.
Similarly, the main effect of sample size was due to an unusually large amount of average RMSE
found in the N=750 condition. The interaction of these two factors was primarily due to the fact
that the negatively skewed generating condition was associated with the highest RMSE when the
sample size was limited to 500. However, with larger sample sizes, the positively skewed
condition exhibited the largest amounts of error, especially when N=750.

Results for the average RCORR values were similar to those for the RMSE index in that
there were interpretable effects associated with the generating distribution for O, the sample size,
and the interaction between these two factors. The main effect of generating distribution
indicated that the linear relationship between true and estimated Oi was significantly smaller for
the positively skewed generating condition, although all the average RCORR values were above
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.95 in all conditions. The sample size main effect was due to a decreased linear relationship
between true and estimated parameters when the sample size was equal to N---750, in which case,
the average RCORR equaled .963. All other sample size conditions produced larger, relatively
similar RCORR values (e.g., .979 on average). Finally, the generating distribution x sample size
interaction revealed smaller average RCORR values for the positively skewed generating
distribution, but only when the sample size was greater than 500. For the N=500 condition, the
negatively skewed generating condition produced the smallest average RCORR value. Thus, the
results from the analysis of RCORR values were consistent with those presented earlier for the
RMSE index.

Analysis 2. Table 2 shows the re values for the second analysis of the recovery accuracy
measures for 0i. Recall that the second analysis included the effects of correspondence between
the generating and prior distributions. With regard to the RIvISE index, there were interpretable
effects due to the number of quadrature points, the generating distribution for ei, the sample size,
and the interaction of these latter two factors. The patterns associated with these effects were
highly similar to those from the first analysis (see Figure 10), and thus, they will not be discussed
further. More importantly, the average RMSE for ei was slightly lower when there was
correspondence between generating and prior distributions (.188) as opposed to when these
distributions did not match (.231). Additionally, there was an interaction between generating
distribution and correspondence between generating and prior distributions which is displayed in
the top panel of Figure 11. When the generating and prior distributions did not match, the error
found with the positively skewed generating distribution was disproportionately large. However,
the differences in average RMSE values attenuated between generating conditions when the prior
matched the generating distribution. There was also a 3-way interaction involving generating
distribution x correspondence between prior and generating distributions x sample size. This
interaction is illustrated in the lower panel of Figure 11. The interaction was due to the fact that
the increased error encountered when using a nonmatching prior with a positively skewed
distribution was disproportionately large for the N=750 condition while it was ahnost absent in
the N=500 condition. In this latter condition, the most error was encountered when the
nonmatching prior was used with the negatively skewed distribution.

With regard to the average RCORR values, there were interpretable effects due to the
generating distribution for O, the sample size and the interaction of these two factors. Each of
these effects was very similar to that reported in the first analysis and will not be discussed
further. Additionally, there were several effects that involved the correspondence between prior
and generating distributions for 0.0 and these effects were consistent with those found for the
RMSE index. Specifically, the average correlation between true and estimated ei was higher
when the distributions matched (e.g., .984 versus .971). There was also a 2-way interaction
involving the generating distribution x correspondence between prior and generating distributions.
The mean RCORR values associated with this interaction are shown in the upper panel of Figure
12. The interaction was due to the fact that average RCORR values were disproportionately
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smaller for the positively skewed generating condition when the prior distribution did not match
the generating distribution. There was also a 3-way interaction involving generating distribution
x correspondence between prior and generating distributions x sample size. The average
RCORR values describing this interaction are given in the lower panel of Figure 12. The
interaction occurred because the positively skewed distribution produced disproportionately lower
RCORR values when the prior did not match the generating distribution, but this occurred only
for sample sizes greater than 500. Moreover, this effect was unexpectedly large when the sample
size was equal to 750. In contrast, the negatively skewed distribution produced the most obvious
reduction in RCORR values when the prior did not match and the sample size was equal to 500.

post-hoc Analyses of ei Estimates

As mentioned above, the magnitude of error in person estimates was sometimes unusually high
when a nonmatching normal prior distribution was used with a skewed generating (true)
distribution. Moreover, this result interacted with sample size in a unintuitive maimer. To
understand these results better, the relationship between true and estimated 0; values was plotted
for the condition in which the worst recovery accuracy was encountered - namely, the condition in
which a positively skewed generating distribution was used with a nonmatching normal prior and
a sample size of N=750. The scatterplot for this condition is shown in the upper right panel of
Figure 13. Note that data from all the replications in this condition are shown in the scatterplot.
Thus, there are 10 points per simulee and each of these 10 points correspond to the same true Oi
value. It is obvious from the scatterplot that estimation error was exceedingly high for simulees in
the right tail (i.e., the skewed tail) of the underlying ei distribution. Further examination of these
simulees revealed that they had extremely low item scores indicative of strong disagreement with
all items. In essence, these simulees strongly disagreed with most, if not all, items because no
items were close to their extreme ei positions. The remaining panels in Figure 13 show analogous
scatterplots for other conditions in which the estimation of ej suffered disproportionately. In each
condition, estimation of ej seemed reasonable for all simulees except those with the most extreme
values of 03.

Difficulty in estimating 0; for individuals who fail to agree with any items has been broached in
both maximum likelihood (Roberts, 1995; Roberts & Laughlin, 1996a, 1996b) and EAP
estimation contexts (Roberts, Donoghue & Laughlin, 1998, 1999). To assess the impact that
extreme response patterns had in the conditions portrayed in Figure 13, the scatterplots were
reconstructed after excluding any simulees whose average item response was less than .25. Given
that there were 20 items on a 0-5 point response scale in which 5 represented strong agreement,
those simulees below this cutoff did not strongly agree with any item on the test. The
reconstructed scatterplots are displayed in Figure 14. Clearly, the estimation of 0; improved
substantially when those simulees with extreme response patterns were eliminated. When the
average RMSE was calculated for the data from each panel in Figure 14, it ranged from .189 to
.204. This level of error is similar to that obtained in the other simulated conditions.

The post-hoc findings portrayed in Figures 13 and 14 are conceptually straightforward. Those
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individuals with nonextreme true ei values will generally have nonextreme response patterns. The
information contained in these nonextreme response patterns will dominate the influence of the
prior distribution when estimating 13 values. Therefore, if reasonable estimates of item parameters
are available, then relatively accurate ei estimates can be obtained. In contrast, when individuals
are located far from any of the test items, they will, in all likelihood, fail to endorse any item to an
appreciable extent. Moreover, the amount of information provided by the item responses will be
minimal for these individuals. Under these circumstances, the observed data will provide little
guidance as to the locations of these persons on the latent continuum. In such cases, the prior
distribution will provide the bulk of information about the most appropriate location for these
individuals. When that prior distribution differs markedly from the true distribution of ei, then
those individuals with extreme response patterns will have relatively inaccurate estimates of 8; due
to the dominant influence of the discrepant prior distribution.

Discussion

The recovery results reported above suggest the MML item parameter estimates are relatively
robust to discrepancies between the true distribution and prior distribution for 0,. This implies
that one can generally use a normal prior distribution when one is unsure of the true distribution
ofej, and that the impact of this strategy on the accuracy of the resulting item parameter estimates
will be modest at most. Moreover, even when the accuracy of item parameter estimates is slightly
degraded by the discrepancy between prior and true ei distributions, the impact of this
discrepancy on the accuracy of the estimated item response function will generally be even
smaller. Although small improvements in the response function estimate can be gthned by
utiliimg a matching prior distribution when one can approximate the true distribution of Op this
improvement is negligible relative to that which can be obtained by increasing the number of
quadrature points used in the integration process to 20 or more. The accuracy benefits of
correctly matching the prior and true distributions is also smaller than the increase in accuracy
provided by larger sample sizes. These sensitivity results for the GGUM are similar to those
found in past studies of other cumulative item response theory models (Bock & Aitkin, 1981;
Seong, 1990; Bartholomew, 1988), and this convergence of fmdings across very different models
provides more confidence about the general applicability of the MML procedure.

These results also reinforce the notion that MML estimation of item parameters in the GGUM
improves with sample size, although large samples of up to 1000 subjects may be required before
any diminishing returns on accuracy are noticeable. Nonetheless, the accuracy achieved before
diminishing returns are encountered may still be acceptable in an absolute sense. This is especially
true if one is concerned more with the accurate estimation of the item response fimction rather
than the accuracy of particular item parameter estimates.

Another interesting finding is that EAP estimates of person parameters appear to be more
sensitive to the prior distribution assumption than are MML estimates of item parameters.
However, except for estimates of those 0; values associated with extreme response patterns, the
level of error seems to be generally acceptable. It may seem odd that the prior distribution of Oi
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should have so little an impact on the majority of 0; estimates. However, the EAP method is a
Bayesian technique. Therefore, given adequate estimates of item parameters, the impact of the
prior distribution should decrease as the number of (informative) item responses increases.
Therefore, the acceptable accuracy of EAP estimates when the prior and true distributions of Oi
are discrepant is primarily due to the previously mentioned robustness of item parameter estimates
derived from the MML technique.

One exception to the general acceptability of EAP estimates in the GGUM occurs in the case
where an individual fails to agree with any test items. In this case, the responses contain little
information about the individual's location on the continuum, and thus, the impact of the prior
distribution on the resulting estimate is very strong. If that prior correctly matches the true
distribution of O, then the resulting estimate may be quite accurate. However, large inaccuracies
can result when the prior distribution does not adequately match the true distribution. For this
reason, it seems reasonable to score only those individuals who exhibit some minimal level of
agreement with at least one item. This strategy has been recommended in other applications of
the model (Roberts, 1995; Roberts & Laughlin, 1996a 1996b; Roberts, Donoghue & Laughlin,
1998, 1999). We should also note that, theoretically speaking, this situation would only arise
when an individual's location on the latent continuum was far from most, if not all, of the item
locations for a given test. Therefore, this problem is at least partially under the control of the test
developer, and items can be constructed to minimize the probability that this situation will occur.

Finally, the results of this study suggest that 20 quadrature points provides an acceptable level
of numerical precision when calculating either MML estimates of item parameters or EAP
estimates of person parameters. However, one must remember that the item responses simulated
in this study conformed perfectly to the GGUM. In applications with real data, a more cautious
perspective may be warranted, and thus, one may want to use more quadrature points.

Educational Importance

The impact of item response theory models for the measurement of ability in large scale
educational testing situations has been enormous during the last 20 years. Item response models
have led to scientifically sound approaches to assess differential item functioning (DIF) and to
equate tests conta.ming different items. They have also allowed for the development of sample
free item banks and efficient computer adaptive testing (CAT) procedures. The family of models
represented by the GGUM holds the same potential for other latent constructs that are important
to educational researchers such as attitudes toward academic subjects, attitudes toward higher
education, preferences for alternative teaching styles, etc. The GGU/vI could provide useful
information in large scale educational testing situations and offer important insights about DIF,
questionnaire equating, item banking and CAT in the attitude/preference domain similar to that
provided by cumulative item response theory models in the ability domain. However, these
insights can only be achieved to the extent that a reliable, accurate means of estimating GGUM
parameters exists. The current study provides evidence that MML estimates of GGUM item
parameters are robust to differences between the true distribution and the prior distribution for ei
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- a situation which is likely to occur to at least a moderate degree in practice. Moreover, this
study also suggests that EAP estimates of person parameters in the GGUM are also reasonable in
the face of the same discrepancies whenever response patterns are not extreme. The robustness
of these estimation methods should help promote the use of the GGUM as a viable model for
applied researchers, which, in turn, will help secure the benefits of item response theory models in
the attitude/preference arena.
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